Чтобы оценить качество саморегулирующегося греющего кабеля необходимо изучить паспорт с заявленными характеристиками, сертификат электро- и пожаробезопасности, а также его основные внешние и рабочие свойства.
Большинство производителей заявляет общие характеристики мощности, максимальной рабочей температуры, а также срок службы. Данные параметры не являются стандартизированной величиной, то есть не проходят проверку при сертификации. Сертификат подтверждает безопасность работы нагревательного кабеля при соблюдении соответствующих условий эксплуатации.
Таким образом, рабочие характеристики кабеля, заявленные в каталогах производителя, можно проверить лишь опытным путем. Некоторые исследования довольно просты, и дают общее представление о качестве кабеля. Более сложные испытания проводятся в специализированных лаборатория, с соблюдением условий и технологии измерения исследуемых параметров.
В приведенном примере исследуются характеристики саморегулирующегося нагревательного кабеля трех разных производителей. Кабель без оплетки, линейной мощностью 16 Вт/м, применяемый для обогрева бытовых трубопроводов под теплоизоляцией.
Состав и строение саморегулирующегося кабеля

Рабочие характеристики греющего кабеля напрямую зависят от:
- Строения нагревательного кабеля (количество оболочек, их толщина, диаметр токоведущих жил).
- Качества материалов, применяемых в оболочках, саморегулирующейся матрице и токоведущих жилах.
- Технологии изготовления (плотность прилегания оболочек, наличие воздушных пузырьков в составе полимера).
Для соблюдения технологии исследования взято 3 отрезка греющего кабеля длиной 1м. Для сравнения внешняя и внутренняя оболочки отделены от саморегулирующейся матрицы. Исследуются механические свойства – внешний вид, жесткость, плотность прилегания, а также измеряется толщина каждого элемента.



Параметр нагревательного кабеля | Описание | Образец №1 | Образец №2 | Образец №3 |
---|---|---|---|---|
Толщина наружной оболочки, мм | Измерение осуществлялось микрометром | 0.75 | 0.95 | 0.85 |
Толщина внутренней оболочки, мм | Измерение осуществлялось микрометром | 0.51 | - | 0.5 |
Диаметр скрученной токоведущей жилы, мм | Измерение осуществлялось микрометром | 1.3 | 1.15 | 1.35 |
Количество и диаметр токоведущих жил, мм | Измерение осуществлялось микрометром | 19 жил по 0.24мм | 19 жил по 0.23мм | 7 жил по 0.49мм |
Гибкость оболочек обуславливает соблюдение минимального радиуса изгиба кабеля. Отсутствие воздушных пузырей на сгибе, умеренная упругость кабеля говорит о соблюдении технологии изготовления и равномерности толщины оболочки. Эти характеристики влияют на удобство монтажа кабеля и стойкость оболочек к внешним воздействиям. В данном исследовании Образцы №1 и №3 полностью соответствуют требованиям к механическим свойствам греющего кабеля. Образец №2 имеет более жесткую внешнюю оболочку, что делает кабель менее гибким – это усложняет монтаж на мелких деталях трубопровода.
В процессе исследования Образца №2 не удалось отделить внутреннюю оболочку от матрицы (Рисунок 1). Это значительно затрудняет зачистку токоведущих жил в процессе монтажа, увеличивая срок работ. Кроме того, при зачистке велика вероятность их повреждения.
Также на внутренней стороне внешней оболочке Образца №2 обнаружены следы спекания. Вероятнее всего была нарушена технология производства кабеля, а именно – превышена температура (Рисунок 2).

Рисунок 1

Рисунок 2

Рисунок 3
Диаметр токоведущей жилы греющего кабеля определяет максимальную длину секции греющего кабеля.
Большая максимальная длина греющей части кабельной секции позволяет:
- Уменьшить количество соединений в системе обогрева, что во-первых, экономит время монтажа, а во-вторых, повышает надежность системы.
- Экономит количество соединительных элементов.
- Уменьшает длины силовых кабелей.
В данном исследовании максимальная длина секции Образца №3 соответствует каталожному значению, указанному производителем и значительно превышает данный параметр Образцов №1 и №2.
Параметр нагревательного кабеля | Описание | Образец №1 | Образец №2 | Образец №3 |
---|---|---|---|---|
Сечение токоведущей жилы, мм2 | Вычислено по формуле S=N*3.14*d*d/4, где N - количество жил, d - диаметр жилы | 0.86 | 0.79 | 1.31 |
Максимальная длина нагревательной секции в зависимости от сечения токоведущей жилы | Определяется допустимый длительный ток с учетом поправочного коэффициента на нагрев жилы от матрицы (К=0.61) в зависимости от сечения токоведущей жилы по ПУЭ.* | 101 | 93 | 135 |
Для сечения 1.32мм2 принято 16А*0.61=9.76А, сечения 0.86мм2 принято 12А*0.61=7.32А, для сечения 0.79мм2 принято 11А*0.61=6.71А. Далее вычисляется по формуле L=U*Iдоп/Pуд, где L-длина секции, U=220В - напряжение сети, Iдоп - допустимый длительный ток, Pуд=16Вт/м - удельная мощность кабеля.
Таким образом, система обогрева выполненная на базе Образца №3 будет экономически более выгодной при всех прочих равных условиях.
Мощность греющего кабеля и стартовые токи напрямую зависят от сопротивления токоведущей жилы. При тестировании сопротивление и пусковой ток измеряется при комнатной температуре и при температуре кабеля -15°С. Чем ниже коэффициент стартового тока, тем меньше возрастает мощность греющего кабеля (от номинальной) при включении системы.
Меньший коэффициент стартового тока:
- Экономия энергии при запуске системы
- Дольше срок службы греющего кабеля (меньшее воздействие на полупроводниковую матрицу)
- Меньший номинал пускозащитной аппаратуры (ниже её стоимость)
- Меньшее сечение силовых кабелей
- Выше надежность системы
Так как пусковой ток связан с площадью сечения токоведущей жилы, самый низкий СТ показал Образец №3.
Параметр нагревательного кабеля | Описание | Образец №1 | Образец №2 | Образец №3 |
---|---|---|---|---|
Сопротивление в "холодном" состоянии при температуре окружающей среды, Ом | Измерение осуществлялось мультиметром при температуре Токр=24С | 1570 | 1350 | 2360 |
Пусковой ток при температуре окружающей среды, А | Измерение осуществлялось многофункциональным измерителем мощности при температуре Токр=24С | 0.226 | 0.283 | 0.136 |
Пусковая мощность при температуре окружающей среды, Вт | Вычислено по формуле Pст=U*Iст, где Pст - пусковая мощность, U=220В - напряжение сети, Iст - пусковой ток | 49.72 | 62.26 | 29.9 |
Сопротивление в "холодном" состоянии при температуре Т=-15С, Ом | Образец помещен в морозильную камеру на время не менее 4 часов. Температура морозильной камеры Т=-15С. Измерение осуществлялось мультиметром сразу после изъятия из морозильной камеры | 917 | 840 | 1000 |
Пусковой ток при температуре Т=-15С, А | Образец помещен в морозильную камеру на время не менее 4 часов. Температура морозильной камеры Т=-15С. Измерение осуществлялось многофункциональным измерителем мощности сразу после замера сопротивления | 0.318 | 0.366 | 0.227 |
Пусковая мощность при температуре Т=-15С, Вт | Вычислено по формуле Pст=U*Iст, где Pст - пусковая мощность, U=220В - напряжение сети, Iст - пусковой ток | 69.9 | 80.5 | 49.9 |
Номинальный ток в установившемся режиме, А | Измерение осуществлялось многофункциональным измерителем мощности при температуре Токр=24С спустя 15 минут после включения кабеля | 0.073 | 0.088 | 0.039 |
Соответственно при понижении температуры пусковая мощность возрастает. Подробную таблицу зависимостей мощности греющего кабеля от температуры окружающей среды, вы можете найти в следующем разделе.

Рисунок 1

Рисунок 2

Рисунок 3
Температура нагрева саморегулирующегося кабеля, применяемого для обогрева трубопроводов под теплоизоляцией и соответствующего низкотемпературному классу Т6 по нормам не должна превышать 65°С. Это необходимо для безопасной эксплуатации кабеля под теплоизоляцией, имеющей низкую температуру плавления, а также при обогреве пластиковых трубопроводов.
При тестировании (комнатная температура) Образец №1 показал нагрев до 61°С. Следовательно, при более низкой температуре окружающей среды под теплоизоляцией этот показатель будет гораздо выше. Образец №2 при тестировании нагрелся до 55°С. Это не критическая температура, но она находится на границе класса. Образец №3 показал температуру нагрева 43°С, что соответствует каталожному значению, а также температурному классу Т6.
Параметр нагревательного кабеля | Описание | Образец №1 | Образец №2 | Образец №3 |
---|---|---|---|---|
Максимальная температура нагрева кабеля в установившемся режиме, С | Измерение осуществлялось пирометром в нескольких точках. В протоколе указано максимальное значение из всех измеренных | 55 | 61 | 43 |
Несоблюдение температурного режима ведет не только к перерасходу электроэнергии, но и к возможным повреждениям трубопровода и теплоизоляции, а также выхода системы из строя.


Таким образом, можно заключить, что при внешней схожести образцов кабеля и заявленных производителем характеристиках, качество и производственные особенности саморегулирующихся лент различны. Проведенное тестирование полностью прошел только один Образец №3. Для того, чтобы убедиться в качестве приобретаемого кабеля, необходимо не только оценивать сопроводительную документацию, но и запрашивать результаты тестирований, проводимых производителями, зафиксированные в протоколах испытаний.
Греющий кабель с гарантией производителя
Вам также помогут статьи
- Оптовые поставки теплого пола и греющего кабеля
- Проектирование систем электрообогрева